A Portable Pi "Shack"

Field Day 2020 Adventure

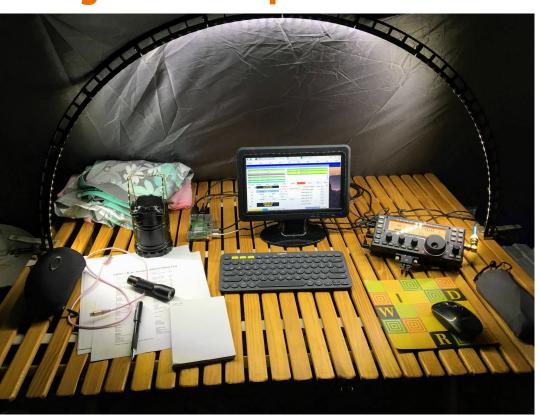
Objectives

- Deploy a portable "digital modes" station capable of FT-8 (and others)
- Run entirely off 12V DC power sources
- Complete a "socially-distanced" Field Day

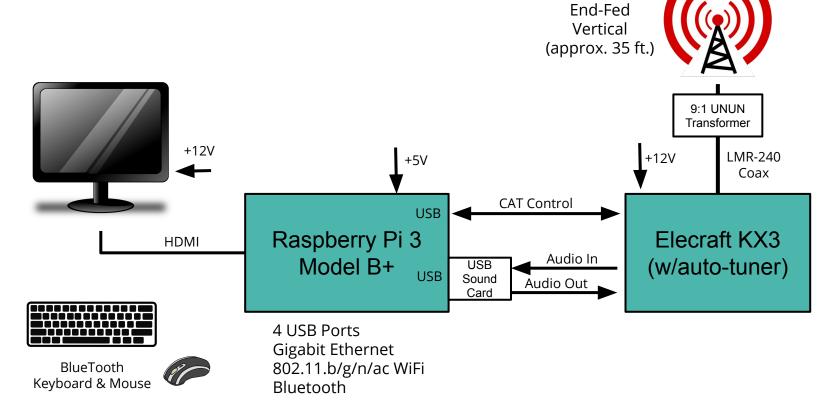
The 2020 Field Day Plan

Fly to "camper-friendly" airport (Santa Ynez) and setup operations adjacent to

airport office.

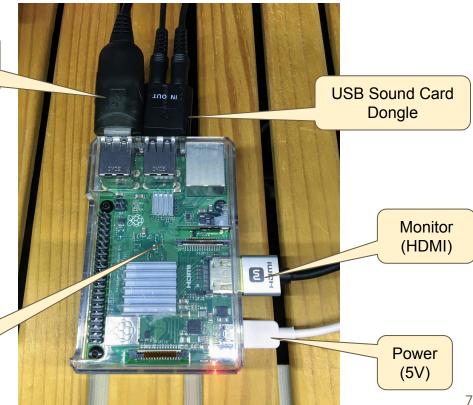

The Campsite

Nice lawn and shade trees!


Night-Time Operations

Complete setup running under an LED light arch

 Custom designed, scaled and 3D-printed to fit table


The "Shack" Setup

Raspberry Pi Details

USB CAT Control Raspbian Linux OS ("Buster") WSJT-X (ARMv6 Build) WiFi configured for local hotspot Keyboard & mouse paired to BT **USB Sound Card (Sabrent)**

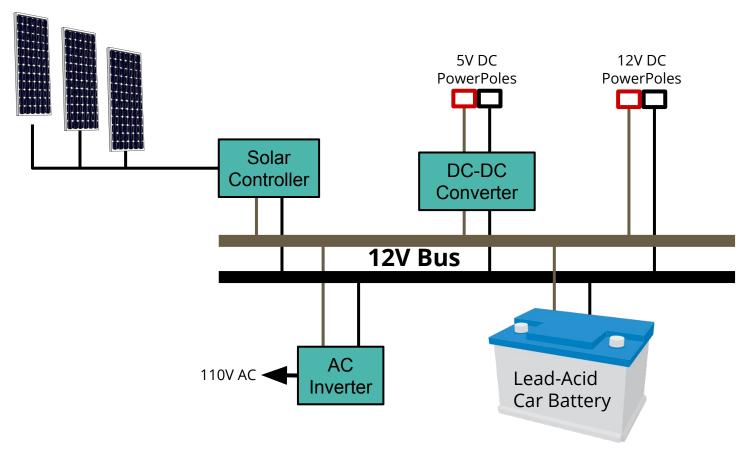
> Raspberry Pi 3 Model B+

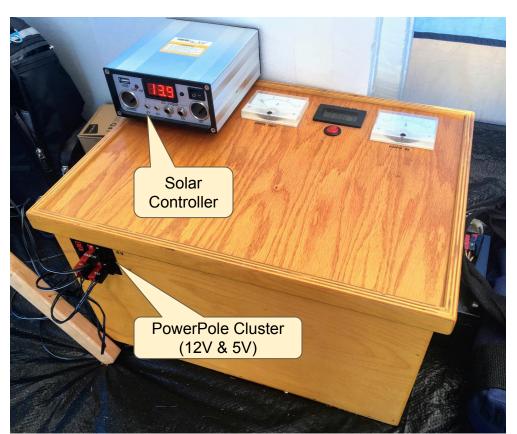
Other Details

Generic LED Monitor (12V)

Elecraft KX3 Transceiver

Dual Bandwidth Roofing Filters (KXFL3)
Automatic Antenna Tuner (KXAT3)
NiMH Battery Charger (KxBC3)
Attached Keyer Paddle (KXPD3)


Multi-Band End-Fed Antenna


- Homebrew version of a design published by the Honolulu Emergency Amateur Radio Club (EARC)
- Box contains a 9:1 UNUN transformer to reduce high impedance of end-fed wire to a range a tuner can handle
 - A tuner is required
- Box designed and printed to be as small as practical
- Deployed successfully both vertically and horizontally

(Details in <u>Resources</u> that follow)

Power System - Schematic

Power System - Deployed

Operation Details

- 82 Total QSOs most on 20m, some on 40m
- WSJT-X internal log used no external logger
 - Cabrillo format exported and uploaded to ARRL
- Raspberry Pi time synchronized to Internet via convenient WiFi hotspot
- KX3 configured for Data A mode, 3K audio bandpass
 - 12W RF output when solar panels active (13+V bus voltage)
 - 10W RF output when on battery, only (11-12V bus voltage)
- Internal tuner easily tunes end-fed vertical (80m 10m)

Summary

- Raspberry Pi performed well, generally!
 - Struggled occasionally to decode heavy FD traffic quickly enough for next exchange cycle
 - Will compare with operations on higher-performance Pi 4 in the future
- Display smaller than laptop, but crisp and easily readable
 - Fine-tuned window layout to maximize preferred views

A very viable portable setup which I'll be using on future fly-in camping adventures!

Resources

Raspberry Pi Model B+	https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
USB Sound Card	https://www.amazon.com/gp/product/B00IRVQ0F8/ref=ppx yo dt b se arch asin title?ie=UTF8&psc=1
KX3 Transceiver	https://elecraft.com/products/kx3-all-mode-160-6-m-transceiver
6M-40M End-Fed Antenna	http://www.earchi.org/92011endfedfiles/Endfed6 40.pdf
WSJT-X	https://physics.princeton.edu/pulsar/K1JT/wsjtx.html