Other Fun Project With Raspberry Pi (RP)

Michael Bao Al6BJ

Water Problems at Home

- Typically,
 - Broken sprinkler head
 - Broken drip emitter
 - Broken hose from a toilet or sink
 - Pipe burst or leaked
 - Unintended usage
- And it happened to me ⊖

What I Need is

- Whole house monitoring including pipes up to main water meter
- Real time alerts (text/email) when a water pressure threshold is reached
- All data is stored in a database for record or analysis
- A low-cost and home-brewed system
- Sensitivity, accuracy and reliability
- Configurable online
- No intensive plumbing nor electrician skills needed

Looking For A Solution

- Bad news: no such complete system/kit is available on the market
 - No real time alerts
 - Rather expensive or not configurable
 - Not monitoring the whole house
 - Some intensive plumbing or electrician skills needed

A Solution Found

- Good news
 - A working system with water pressure sensor (WPS), RP and a hosting website
- Concept of operation
 - A sensor hooked up under a sink to monitor water pressure of the whole house
 - The sensor sends data to a RP via wired/wireless connection
 - The RP uploads data to a hosting website via Ethernet/Wifi
 - The hosting website stores, displays data and sends out alerts via text/email
 - The user analyzes alerts and/or review stored data

Home Water Pressure Monitoring System

Parts

- Raspberry Pi 3 Model B (\$40, amazon.com)
- Water pressure sensor (\$16-\$30, amazon.com)
 - I used HONEYWELL PX2AS2XX100PAAAX (0-100 psi, 3-pin) (\$61, verical.com)
 - Connector shell: 829-12110192 (\$7, mouser.com)
 - 3 connector pins: 829-12089290 (\$1.5, mouser.com)
- 8-channel 10-bit ADC chip (MCP3008, \$5.5, ebay.com)
- Assuming you have 1/2" OD under your sink, you need this adapter or similar one: iSpring 123Filter™ Water Supply Connector (1/2" NPT, Tube 1/4") #AFW2+ABV3 at (\$15, 123filter.com)
- Cobbler cable and a pair of small breadboards (\$10, amazon.com)
- Some jumper wires and data cables

Honeywell

Heavy Duty Pressure Transducers PX2 Series 1 bar to 70 bar | 100 kPa to 7 MPa | 15 psi to 1000 psi

Detechor

Connections - Water Pressure Sensor to a Sink Hose

Connections - Water Pressure Sensor to RP

Hosting website (privateeyepi.com) • See how-to at projects.privateeyepi.com

- Python scripts run on RP
 - globals.py:
 - Declare variables: RP GPIO 19 (Pin No 35)...
 - Set up email account to receive alerts
 - Set up account to login hosting website
 - mysensors.py:
 - Map the data channel 3 with GPIO 19 (RP output)
 - Convert digital to analog value of water pressure
 - Upload data to hosting website periodically
 - restarter.py
 - Automatic re-execution of Python scripts by crontab
- Online configuration and monitoring

Today 7:05 PM

1 of 2 FRM:twstagain@gmail.c SUBJ:Alarm Notification MSG:This is an automated email from PrivateEyePi. Rule triggered for Zone(s): Water (Con't) 2 of 2

Pressure, Location:

my sensors.py

mysensors.py

```
# Function to convert analog data (mV) to water pressure level (PSI),
# Rounded to specified number of decimal places.

def ConvertPSI(data,places):
    min_wps_mV = 330
    max_wps_mV = 2970
    ADC_range = 1024
    ADC_mV = 3300
    min_wps_tick = (min_wps_mV * ADC_range)/ ADC_mV
    max_wps_tick = (max_wps_mV * ADC_range)/ ADC_mV
    tick_range= (max_wps_tick - min_wps_tick)
    PSI_range = 100
    ticks = data - min_wps_tick
    water_pressure_PSI = ticks * PSI_range / tick_range
    water_pressure_PSI = round(water_pressure_PSI,places)
    return (water_pressure_PSI - 6.8) # offset = 6.8 PSI
```


Configuration

Threshold Setup

Data Analysis

- Alert pattern
 - Frequent->water issue (?)
 - Infrequent->normal use of water
 - Someone just comes home (?)
 - Someone uses your garden hose (?)
- Water pressure fluctuation in your area

System Uptime and Security

- Cron job on RP
 - sudo crontab -e */1 * * * * sudo python /home/restarter.py >/dev/null 2>&1
 - sudo python restarter.py
 - sudo service cron start
- 24/7 internet connection
 - Battery backup and surge protection for RP and modem/router
 - Remotely pinging modem for internet provider's status
 - A Python script is run by Windows Task Scheduler
- RP files/image backup with SD card cloning
- Firewall on RP
 - sudo apt-get install ufw
 - SSH

Links

- http://www.projects.privateeyepi.com
- https://learn.adafruit.com/raspberry-pi-analog-to-digital-converters/ mcp3008
- https://www.adafruit.com/datasheets/MCP3008.pdf
- http://www.mouser.com/ProductDetail/Honeywell/
 PX2AS2XX100PAAAX/?qs=7J0fLV8%2FqQlTxplKtBDlJw%3D%3D
- http://computers.tutsplus.com/articles/how-to-clone-your-raspberry-pi-sd-cards-with-windows--mac-59294
- https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial